РАЗДЕЛ 1. ГЕНЕТИКА И БОЛЕЗНИ ЧЕЛОВЕКА
ГЛАВА 57. ГЕНЕТИЧЕСКИЕ АСПЕКТЫ БОЛЕЗНИ
Джозеф Л. Голдстейн, Майкл С. Браун (Joseph L. Goldstein, Michael S. Brown)
Основы генетики
Более одной пятой всех белков (а следовательно, и генов), содержащихся в организме каждого человека, существует в форме, различающейся у большинства членов популяции. Эта замечательная генетическая вариабельность, или полиморфизм, и обеспечивает многообразие особенностей человеческого организма, таких, как рост, умственные способности, давление крови и т. д. Генетические различия также определяют способность каждого индивидуума реагировать на неблагоприятные внешние воздействия, в том числе и на болезнетворные. Все болезни человека можно рассматривать как результаты взаимодействия его индивидуальной генетической структуры с окружающей средой. При некоторых заболеваниях этот генетический компонент отчетливо проявляется и без чрезвычайных внешних воздействий. Такие заболевания носят название генетических.
Молекулярная основа экспрессии гена.Вся наследственная информация передается от родителей к детям посредством наследования дезоксирибонуклеиновой кислоты (ДНК). ДНК—это линейный полимер, состоящий из пуриновых и пиримидиновых оснований, последовательность которых полностью предопределяет последовательность аминокислот любого белка, синтезируемого организмом. Четыре типа оснований ДНК организованы в группы по три; каждый триплет образует кодовое слово, или кодон, которое кодирует конкретную аминокислоту. Ген представляет собой общую последовательность оснований в ДНК, определяющую последовательность аминокислот в полипептидной цепи одиночной молекулы белка.
Генетическая информация, закодированная в ДНК хромосом, вначале транскрибируется (переписывается)-на копию из рибонуклеиновой кислоты (РНК). Во время транскрипции рибонуклеотиды выстраиваются вдоль ДНК согласно правилам комплементарности оснований. Так, аденин ДНК образует пару с уридином РНК, цитозин — с гуанином, тимин — с аденином, а гуанин — с цитозином. Рибозные основания соединяются вместе посредством РНК-полимеразы. Полученный в результате РНК-транскрипт образует матрицу для трансляции в последовательность аминокислот белка. На 57-1 приводятся кодовые слова ДНК и РНК для каждой аминокислоты белка.
Таким образом можно создавать информативные мутантные фенотипы и сразу же клонировать интересующий ген. Клонированные последовательности можно использовать для поиска последовательностей мРНК, а по ним определять сайты тканеспецифической экспрессии и временные характетики экспрессии гена. Если данный участок кодирует белок, то по последовательностям нуклеиновых кислот можно определить структуру пептидов, которые затем можно синтезировать и использовать для наработки антител, с помощью которых можно было бы определить тканеспецифическое и клеточноспецифическое размещение этого белка. Например, метод вставочного мутагенеза был использован для идентификации летальной эмбриональной мутации в гене коллагена типа I у мыши. Перечисленные средства позволяют создавать информативные фенотипы, исследовать молекулярную основу фенотипа и делать, заключения о соответствующей нормальной биологии и физиологии.
Наличие подробных генных карт человека значительно упрощает поиски генетических вариаций, ассоциированных с предрасположенностью к заболеванию. Тот факт, что многие известные болезни ассоциируются с HLA-локусом, может объясняться либо тем, что гены предрасположенности к заболеваниям локализуются преимущественно в этой области, либо тем, что для высокополиморфных маркеров проще получать данные. По мере картирования посредством ПДРФ других частей генома могут проявиться дополнительные ассоциации между заболеваниями и генетическими маркерами. Такие ассоциации будут способствовать идентификации тех генов, вариации которых предрасполагают к полигенцым или многофакторным заболеваниям.
Этические соображения.В настоящее время пренатальную диагностику осуществляют при болезнях различной степени тяжести, таких как дефицит сц-антитрипсина, фенилкетонурия, серповидно-клеточная анемия, мышечная дистрофия и семейная гиперхолестерннемия. В вопросе о допустимости искусственного прерывания беременности по поводу этих заболеваний мнения общественности и отдельных лиц разделились. Развитие ген-замещающей терапии и других методов лечения неизлечимых ныне генетических заболеваний может выразиться в конечном итоге и в снижении частоты абортов.
Возможности ген-замещающей терапии затрагивают и другие этические проблемы. Соматическая ген-замещающая терапия связана с индивидуальной оценкой соотношения «к—польза» для каждого больного. До тех пор пока не затрагивается ДНК половых клеток, людей обычно интересует лишь один серьезный этический вой-рос: наилучшим ли образом соответствует данный метод лечения интересам пациента? Опыт химиотерапии рака позволяет предполагать, что небольшой уровень ненамеренных повреждений ДНК половых клеток воспринимается как нежелательный, но оправданный к такой терапии, если. она приносит больному существенную пользу. Можно представить, что в будущем методы сайт-специфической рекомбинации позволят замещать мутантную ДНК в половых клетках нормальным материалом. Если кто-то раз и навсегда сможет корректировать в половых клетках человека мутации, приводящие к кистозному фиброзу, хорее Гентингтона или серповидно-клеточной анемии, и если лечение будет эффективным и безопасным, то будет ли общество рассматривать такую терапию как грубое вмешательство?